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ABSTRACT

The bubbly wake is a highly observable feature that persists
far behind a vessel. Predicting the bubble population
created by the air-entraining free surface turbulence
(FST) in the near-wake region of the bubbly wake
remains a challenge in computational ship hydrodynamics.
Entrainment and degassing are the two mechanisms that
determine the volume of entrained air; however, measuring
instantaneous bubble populations only elucidates their net
effect. Eulerian label advection (Gaylo et al., 2022)
provides accurate and robust tracking of every bubble in
a simulation, enabling the first separate measurement of
entrainment and degassing. Using ELA with ensemble
direct numerical simulations of a canonical shear-flow
FST at large Froude numbers, we elucidate the statistics
of entrainment and degassing. To enable comparison to
general FST flows, we report a second Froude number
based on the turbulence in the near-surface region. For
entrainment, we confirm that the size distribution follows
𝐼 (𝑎) ∝ 𝑎−10/3 predicted by Yu et al. (2020). Quantifying
the volume flow rate of degassing relative to entrainment,
we show that degassing significantly modifies the total
entrained volume in FST, independent of large F𝑟2.
For degassing, we consider a bubble radius dependent
degassing rate 𝜆(𝑎) (units [1/𝑇]). We elucidate two
distinct degassing regimes, separated by the critical radius
where turbulent velocity 𝑢rms equals a bubble terminal rise
velocity. This highlights the importance of both buoyant
rise and turbulent advection in degassing models.

INTRODUCTION

In the flow around a vessel, strong turbulence in the
water near the free surface leads to entrainment of air.
This entrained air forms a cloud of bubbles referred to
as the bubbly wake, which persists miles behind the
vessel (Trevorrow et al., 1994) and has distinct and highly
observable acoustic and surface features (NDRC, 1946).
Thus, understanding the extent of the bubbly wake as well
as the size distribution of the bubble population within it
is important to the design and operation of naval vessels.

The bubbly wake can be split into two regions:

the near wake region where strong turbulence entrains
a significant volume of air and fragments large bubbles
into smaller bubbles; and the far wake region where the
flow is more quiescent and bubbles slowly rise to the
surface and degas as the air within them also dissolves
into the water. While the far wake is a much larger region
than the near wake, a current challenge in computational
ship hydrodynamics is that accurate prediction of the
far wake requires the total volume, spatial distribution,
and size distribution of the bubble population created by
entrainment and other physical mechanisms in the near
wake. As fully resolved (both turbulent scales and bubble
scales) simulation of the near wake is not possible with
existing computational resources (Castro et al., 2016),
models are needed to describe these physical mechanisms.
To this end, direct numerical simulation (DNS) of
smaller-scale air-entraining free-surface turbulence (FST)
provides physical insights and quantitative measurements
to inform development of the models necessary for
accurate prediction of the bubbly flow in the near wake.

This work uses DNS of air-entraining FST
to study entrainment and degassing, including their
interactions and relative strengths, in the near wake.
Because dissolution of air into the water generally
occurs on timescales much larger than those relevant
to the near wake, the balance between entrainment and
degassing determines the total volume of entrained air.
While degassing has often been studied in the absence
of free-surface entrainment (relevant to the far wake)
(Thorpe, 1982; Ruth et al., 2021), little is known about
its effect when in combination with active entrainment, as
in the near wake. Practically, measuring entrainment and
degassing separately is a challenge, and previous studies
only measure the net effect of the two. For example, Yu
et al. (2020), while studying air entrainment in a canonical
shear-flow FST, assumed that degassing was negligible so
that they could use the change in total entrained volume
to infer the physics of entrainment. However, with the
computational tools available at the time, they could not
evaluate this assumption.

Through ELA, we provide the first separate
measurements of entrainment and degassing in a



near-wake turbulent free surface flow. We revisit the
canonical shear-flow FST studied by Yu et al. (2020),
but now with Eulerian label advection (ELA) (Gaylo
et al., 2022) to robustly track the evolution of bubbles
during the simulation. With this new tool, we are able
to identify individual entrainment and degassing events
and then extract their statistics. For shear-flow FST, we
first examine turbulence statistics near the free surface to
provide a turbulence-based Froude number applicable to
general FST. Looking at entrainment statistics, we verify
that entrainment follows the size distribution predicted
mechanistically by Yu et al. (2020). Comparing the
volume flux due to entrainment to that due to degassing,
we find that degassing is not negligible and significantly
effects the total entrained volume, and that the relative
strength of degassing to entrainment is Froude invariant.
Looking at degassing statistics, we find two distinct
regimes for the dependence on degassing rate on bubble
radius, which we explain by comparing turbulent advection
to buoyant rise of bubbles.

DESCRIBING BUBBLE POPULATIONS

Bubble Size Distribution, 𝑁 (𝑎)
The population of bubbles within a flow can be

described by a size distribution 𝑁 (𝑎), where 𝑁 (𝑎)𝛿𝑎 gives
the number of bubbles of effective1 radius 𝑎 < 𝑎′ < 𝑎+𝛿𝑎
within a domain of interest. As opposed to resolving
individual bubbles, a common approach for computational
ship hydrodynamics is to model the stochastic evolution
of 𝑁 (𝑎) using a population-balance equation (Castro &
Carrica, 2013),

𝜕𝑁

𝜕𝑡
= 𝒮𝑑 +𝒮𝑓 +𝒮𝑐 + 𝐼 − 𝐷 , (1)

where the terms on the right correspond to the five physical
mechanisms that act on the bubbles. Three mechanisms
move air among bubble sizes:

•𝒮𝑑 – dissolution of air into the water,

•𝒮𝑓 – fragmentation of bubbles,

•𝒮𝑐 – coalescence of bubbles,

and two mechanisms move air across the free surface:

•𝐼 – injection of bubble through entrainment at the free
surface,

•𝐷 – loss of bubbles through degassing at the free
surface.

Here, 𝐼 (𝑎, 𝑡)𝛿𝑎𝛿𝑡 is the number of bubbles radius 𝑎 < 𝑎′ <
𝑎+𝛿𝑎 that are entrained over 𝑡 < 𝑡′ < 𝑡 +𝛿𝑡 within domain
of interest, and the definition for 𝐷 (𝑎, 𝑡) is similar.

1Defined by the volume 𝑣 of a bubble: 𝑎 = (3𝑣/4π)1/3.

Table 1: Regimes of bubble rise velocity for different R𝑒𝑏,
as described by Park et al. (2017).

Regime R𝑒𝑏 𝑊𝑡

Viscous < 1 g𝑎2

3𝜈
Inertial 1 – 100 0.408 g5/6𝜈−2/3𝑎3/2

Cap > 100 1.02 𝑔1/2𝑎1/2

In both breaking waves (Deane & Stokes, 2002)
and entrainment by turbulence (Yu et al., 2020) it is often
observed that the bubble size distribution follows 𝑁 (𝑎) ∝
𝑎−10/3 for large bubbles, specifically, larger than the Hinze
scale such that fragmentation is unaffected by surface
tension (Hinze, 1955). Garrett et al. (2000) showed that a
fragmentation cascade, where large bubbles successively
fragment into smaller bubbles, creates this −10/3 power
law. Considering fragmentation and entrainment together,
it can be shown analytically that, at equilibrium, this
fragmentation cascade will dominate and 𝑁 (𝑎) ∝ 𝑎−10/3

will be observed if entrainment is weak, specifically, if
𝐼 (𝑎) ∝ 𝑎𝛾 where 𝛾 ≥ −4 (Gaylo et al., 2021). Gaylo
et al. (2023) showed that this equilibrium fragmentation
cascade is obtained very quickly in FST.

Looking at the entrainment size distribution 𝐼 (𝑎),
Yu et al. (2020) compare the energy available from
turbulence and the energy necessary to create a bubble to
predicted 𝐼 (𝑎) ∝ 𝑎−10/3 for large bubbles, here meaning
large in terms of Bond number. However, because this
predicted entrainment is weak (−10/3 ≥ −4) and happens
to line up with the fragmentation cascade equilibrium
for 𝑁 (𝑎), it is difficult to confirm the presence of this
entrainment size distribution based on observations of
𝑁 (𝑎) alone.

Degassing of a bubble happens when it rises to the
free surface. For void fractions small enough that the local
turbulence in the water is unaffected by the presences of air
bubbles, we expect the movement of individual bubbles to
be independent. The independence of individual bubbles
implies that the degassing size distribution 𝐷 (𝑎) must
depend linearly on the bubble population size distribution
𝑁 (𝑎). Based on this assumption, we can define a degassing
rate 𝜆(𝑎) (units 1/𝑇) given by

𝜆(𝑎) ≡ 𝐷 (𝑎)
𝑁 (𝑎) , (2)

which should be a function of turbulence and bubble
radius, but independent of 𝑁 (𝑎). Because degassing is the
result of bubbles rising to the surface, models of degassing
generally depend on the mean rise velocity of a bubble.
For the simplest model, we have the terminal velocity of
a bubble in quiescent flow, 𝑊𝑡 (𝑎). As shown in table 1,
this can be described by one of three regimes depending



on the bubble-rise Reynolds number (Park et al., 2017),

R𝑒𝑏 ≡ 2𝑎 𝑊𝑡 (𝑎)
𝜈

. (3)

More detailed models are available for non-quiescent flows
where mean rise velocity is effected by turbulence (Ruth
et al., 2021); however, degassing has not been studied in
FST where entrainment is also present, as is the case in
the near wake we are interested in modeling.

Total Entrained Volume, 𝑉
Related to the size distribution of bubbles

described by 𝑁 (𝑎), a simple scalar quantity is the total
volume of entrained air,

𝑉 =
4π
3

∫ ∞

0
𝑁 (𝑎)𝑎3 d𝑎 . (4)

Fragmentation and coalescence do not cause any change
in the total entrained volume, and dissolution is negligible
for the large bubbles and short timescales relevant to the
near wake, so the evolution of the total entrained volume
is

𝜕𝑉

𝜕𝑡
= 𝑄𝐼 −𝑄𝐷 , (5)

where the entrainment flow rate is

𝑄𝐼 =
4π
3

∫ ∞

0
𝐼 (𝑎)𝑎3 d𝑎 , (6a)

and the degassing flow rate is

𝑄𝐷 =
4π
3

∫ ∞

0
𝐷 (𝑎)𝑎3 d𝑎 . (6b)

The size distribution 𝑁 (𝑎) provides a detailed
description of the bubble population, and the size of
bubbles is certainly relevant to the evolution of the bubbly
wake and its observable features. However, we find that
total entrained volume, being a scalar quantity rather than
a distribution, provides a useful metric to characterize the
evolution of the bubbly wake, particularly in the near wake
where we expect large 𝜕𝑉/𝜕𝑡 driven by the presence of
entrainment.

SIMULATION METHODOLOGY

We perform DNS of the two-phase, incompressible,
three-dimensional Navier-Stokes equations on a uniform
Cartesian grid using the conservative volume of fluid
method (cVOF) (Weymouth & Yue, 2010). During the
simulation, Eulerian label advection (ELA) tracks the
volume of individual bubbles (Gaylo et al., 2022). This
provides a volume-based (conservative) description of the
evolution of bubbles in the simulation, from which we can
extract entrainment and degassing statistics.

Two-Phase DNS Solver
For immiscible fluids, a volume of fluid method

is defined based on the color function,

𝑐(x) =
{

1 if x ∈ air
0 if x ∈ water

. (7)

From this color function, density and viscosity are
calculated

𝜌 = 𝑐 𝜌𝑎 + (1 − 𝑐) 𝜌𝑤 , (8a)
𝜇 = 𝑐 𝜇𝑎 + (1 − 𝑐) 𝜇𝑤 . (8b)

For air and sea water, we use 𝜌𝑎/𝜌𝑤 = 0.00123 and
𝜇𝑎/𝜇𝑤 = 0.0159. In the present study, we neglect surface
tension, corresponding to Weber numbers W𝑒 ∼ ∞. For
our DNS method, Yu et al. (2019) verify that neglecting
surface tension accurately captures limiting W𝑒 ≫ 1.

For two-phase immiscible flow, we have three
governing equations: volume conservation

∇ · u = 0 , (9a)

momentum conservation
𝜕u
𝜕𝑡

+ u · ∇u = − 1
𝜌
∇𝑝 + 1

𝜌R𝑒
∇ · (2𝜇E) − ê𝑧

F𝑟2 , (9b)

where 𝑝 is the pressure field and E is the rate-of-strain
tensor 1/2(∇u + ∇uT), and phase conservation

𝜕𝑐

𝜕𝑡
+ u · ∇𝑐 = 0 . (9c)

We discretize these equations using a staggered-grid
finite-volume method with second-order central
differences for the convective terms. An explicit
second-order predictor-corrector method estimates the
time integral in Eq. (9b). The pressure is determined
from the continuity equation using the projection method,
the resulting Poisson equation solved using GMRES, as
implemented in hypre (Falgout et al., 2006). Yu et al.
(2019) provide the numerical verification of this approach
with FST.

For the color function, the average value of 𝑐(x)
in the volume of computational cell defines the volume of
fluid (VOF) field,

𝑓𝑖 𝑗𝑘 ≡ 1
Δ3

∭
Ω𝑖 𝑗𝑘

𝑐(x)dx . (10)

To find Δ 𝑓 = 𝑓 𝑘+1 − 𝑓 𝑘 to advance the VOF field in time
from 𝑡𝑘 to 𝑡𝑘+1 = 𝑡𝑘 + Δ𝑡 , we use operator split advection
to discretize Eq. (9c),

Δ 𝑓 =
Δ𝑡

Δ𝑥3

(
Δ𝑑𝐹𝑑 + 𝑐

𝜕𝑢𝑑

𝜕𝑥𝑑
Δ𝑥3

)
for 𝑑 ∈ 1 . . . 3 .

(11)



Specifically, we use the cVOF method (Weymouth & Yue,
2010), where the difference in flux between the two faces
in a direction Δ𝑑𝐹𝑑 = 𝐹𝑑+1/2 − 𝐹𝑑−1/2 is calculated using
a second-order geometric interface reconstruction, and the
dilation term is calculated using 𝑐, a binary approximation
of 𝑐(x). As proven by Weymouth & Yue (2010), this
explicit method conserves volume of air and water to
machine precision.

Tracking Bubbles with ELA
Identifying entrainment and degassing requires

robust tracking of (many) individual bubbles through time.
cVOF provides the complete (numerical) evolution of the
VOF field, specifying at any point in time where all the
air is in the simulation. However, this is not sufficient
for tracking, where we need to know where the air in
each bubble came from. To obtain this, we use Eulerian
label advection (ELA) (Gaylo et al., 2022). Alternative
post-processing-based tracking approaches seek the ‘most
likely’ explanation for how bubbles evolved between two
snapshots in time 𝑡𝑛 and 𝑡𝑛+1 separated by a snapshot
interval 𝑇𝑠 (generally much larger than the simulation
time step Δ𝑡). With ELA, we introduce a label field at
time 𝑡𝑛 describing which bubble air is in, and through
one-way coupling with Eq. (11), this label field is advected
along with the air. Thus, at time 𝑡𝑛+1, we have an explicit
description of how air volume (and by extension bubbles)
evolved over the snapshot interval 𝑇𝑠 . Below we provide
an overview of ELA, and more details are available from
Gaylo et al. (2023),

At 𝑡𝑛, we identify contiguous connected regions
of air (i.e., bubbles) and assign each a unique label
ℓ. This first step is, more generally, the process of
connected-component labeling (CCL) (He et al., 2017),
and many connection criteria have been proposed. Here,
we use normals-based informed component labeling
method (ICL) (Hendrickson et al., 2020). From the
unique labels assigned by ICL, we can define a vector
color function c𝑛 (x, 𝑡), where each component is given at
𝑡 = 𝑡𝑛 by

𝑐𝑛ℓ (x, 𝑡𝑛) ≡
{

1 if x ∈ bubble ℓ
0 else

. (12)

In effect, Eq. (12) splits the color function into a
vector of many color functions, one for each bubble present
at 𝑡𝑛. The same phase conservation equation applies for
these split color functions,

𝜕c𝑛

𝜕𝑡
+ u · ∇c𝑛 = 0 . (13)

Analogous to VOF, discretizing this split color function,

s𝑛𝑖 𝑗𝑘 (𝑡) ≡
1

Δ𝑥3

∭
Ω𝑖 𝑗𝑘

c𝑛 (x, 𝑡)dx , (14)

and advancing it in time using an operator split method

Δs𝑛 =
Δ𝑡

Δ𝑥3

(
Δ𝑑F𝑑 + c̃

𝜕𝑢𝑑

𝜕𝑥𝑑
Δ𝑥3

)
for 𝑑 ∈ 1 . . . 3 . (15)

Gaylo et al. (2022) provide an efficient way to obtain
the vector expressions Δ𝑑F𝑑 and c̃ from the scalar terms
Δ𝑑𝐹𝑑 and 𝑐 used by cVOF in Eq. (11), creating a one-way
coupling between the VOF advection scheme and bubble
tracking. Gaylo et al. (2022) prove that ELA gives
a volume conservative to machine precision solution to
Eq. (15).

Using ELA, we advance c𝑛 (x, 𝑡𝑛) (discretized as
s𝑛) in time to c𝑛 (x, 𝑡𝑛+1). This means that for any air
particle at time 𝑡𝑛+1, we know which bubble it was in at
time 𝑡𝑛. When we run ICL again at 𝑡𝑛+1, we obtain a
new set of bubbles, and (with Eq. (12)) a new vector color
function c𝑛+1. To express the evolution of bubbles between
𝑡𝑛 and 𝑡𝑛+1, we can define a volume tracking matrix (VTM)
Q𝑛, where each element

𝑞𝑛𝑖 𝑗 ≡
∭

∀
𝑐𝑛𝑗 (x, 𝑡𝑛+1)𝑐𝑛+1

𝑖 (x, 𝑡𝑛+1) dx (16)

describes the volume of air that went from a bubble
labeled 𝑗 at time 𝑡𝑛 to a bubble labeled 𝑖 at time 𝑡𝑛+1.
This VTM provides a robust volume-based description of
bubble evolution, from which physical mechanisms can be
identified.

Extracting Entrainment and Degassing Statistics
Fig. 1 shows an illustration of how entrainment

and degassing can be extracted from a VTM. For ELA, the
bulk region of air above the free surface, the sky, is also
treated as a bubble. To simplify notation, suppose ICL
always identifies this sky ‘bubble’ as label ℓ = 1.

Consider a volume tracking matrix Q𝑛 = 𝑞𝑛
𝑖 𝑗

of size 𝑎 × 𝑏. The relevant portions of the VTM for
entrainment and degassing are the first column and the
first row. The intersection 𝑞11 represents air volume that
stays in the sky. The first row excluding 𝑞11,

V𝑛
𝐷 ≡ {𝑣 ∈ {𝑞𝑛1 𝑗 , 𝑗 = 2 . . . 𝑏} : 𝑣 > 0} (17a)

gives the set of volumes of bubbles that were degassed
between 𝑡𝑛 and 𝑡𝑛+1. Similarly for the first column,

V𝑛
𝐼 ≡ {𝑣 ∈ {𝑞𝑛𝑖1, 𝑖 = 2 . . . 𝑎} : 𝑣 > 0} (17b)

gives the set of volumes of bubbles that were entrained
between 𝑡𝑛 and 𝑡𝑛+1. This approach captures the correct
entrained or degassed volume when only part of a bubble
degases (𝑞𝑛13 < 𝑣𝑛3 in Fig. 1) or when only part of a bubble’s
volume comes from entrainment (𝑞𝑛31 < 𝑣𝑛+1

3 in Fig. 1).
We note that a bubble could be entrained after 𝑡𝑛 and degas
before 𝑡𝑛+1, which introduces some dependence on large
𝑇𝑠 .
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Figure 1: (a) Illustration of entrainment (red) and degassing (green); and (b) the associated volume tracking matrix
Q𝑛 = {𝑞𝑖 𝑗 } provided by ELA. At 𝑡𝑛, there are four contiguous regions of air (three bubbles and the ‘sky’) with volumes
𝑣𝑛
𝑗

and at 𝑡𝑛+1 = 𝑡𝑛 + 𝑇𝑠 there are three with volumes 𝑣𝑛+1
𝑖

. The degassed bubble volumes are V𝑛
𝐷
= {𝑞𝑛13, 𝑞

𝑛
14} and the

entrained bubble volumes are V𝑛
𝐼
= {𝑞𝑛31}.

After converting from volume 𝑣 to (effective)
radius 𝑎, the distribution of V𝑛

𝐷
and V𝑛

𝐼
provide

samples from the degassing size-distribution 𝐷 (𝑎)𝑇𝑠 and
the entrainment size-distribution 𝐼 (𝑎)𝑇𝑠 . In addition,
summing V𝑛

𝐷
and V𝑛

𝐼
give samples of 𝑄𝐷𝑇𝑠 and 𝑄𝐼𝑇𝑠

respectively. From the set of bubbles identified by ICL,
we also have a sample of 𝑁 (𝑎), allowing us to calculate
the degassing rate 𝜆(𝑎). Using an ensemble of simulations
and multiple snapshot intervals over the period of interest,
we can obtain converged statistics.

SIMULATION SETUP

Figure 2: Shear flow initial condition with free surface at
𝑧 = 0 and an initial shear profile given by Eq. (18). (Yu
et al., 2019)

We follow Yu et al. (2019) and consider the
canonical problem of air entraining FST generated by the
breakdown of a shear profile. This canonical problem
captures features of the flow immediately behind a

ventilated transom stern (Hendrickson et al., 2019), and
has been used to understand features of viscous ship wakes
(Dimas & Triantafyllou, 1994). The initial condition
sketched in Fig. 2). The shear profile,

𝑢(𝑧, 𝑡 = 0)/𝑈 = 1 − 0.9988 sech(0.88137 𝑧/𝐿) , (18)

comes from the wake of a foil (Mattingly & Criminale,
1972). In the region of the strongest shear, we create an
initial velocity perturbation (intensity 𝑢rms/𝑈 = 0.35 and
integral length scale ℓ∞/𝐿 = 0.08) by filtering random
white noise (Klein et al., 2003). The rapid breakdown of
this shear profile produces turbulence, including near the
free surface.

The non-dimensional parameters for this
shear-flow FST are the Froude number

F𝑟2 =
𝑈2

g𝐿
, (19)

and the Reynolds number

R𝑒 =
𝑈𝐿

𝜇𝑤/𝜌𝑤 , (20)

as well as the Weber number W𝑒 = 𝑈2𝐿/(𝜎/𝜌𝑤). From
here on, we will normalize all values such that 𝑈 and 𝐿

are unity.
Following Yu et al. (2019), the domain size is

10.472 × 10.472 × 6, with water initially in 𝑧 ∈ [−4, 0]
and air 𝑧 ∈ [0, 2]. For R𝑒 = 1000 studied here, a 3842 ×
256 grid (Δ𝑥 = 0.02) resolves the Kolmogorov scale (see
convergence study by Yu et al. (2019)). With surface
tension neglected, the smallest bubbles that are considered
resolved are radius 𝑎res = 1.5Δ𝑥.

In this work we consider a range of F𝑟2, as shown
in table 2. For each F𝑟2, the simulation is repeated with



Table 2: Summary of simulations performed. The number
of entrained and degassed bubbles refers to resolved
bubbles measured over 𝑡 ∈ [40, 70].

𝐹𝑟2 R𝑒 # of Sims Entrained Degassed
5 1000 6 380 236
8 1000 6 1401 1010
10 1000 5 2001 1390
15 1000 5 4190 2884
20 1000 3 4226 2611

different realizations of the initial velocity perturbation
to obtain an ensemble data set. Because more bubbles
are present at larger F𝑟2, fewer ensemble simulations are
performed with increasing F𝑟2. In total, we perform 25
simulations over 𝑡 ∈ [0, 130].

Simulations were performed on 288 cores
distributed across 6 nodes of HPE SGI 8600 systems
with Intel 8168 Skylake CPUs, located at the U.S. Navy
DoD Supercomputing Resource Center (Navy DSRC).
Each simulation took 30 hours. In total, the simulations
presented in this work used ∼200,000 core hours.

ELA Snapshot Interval
For ELA, we need to determine an appropriate

snapshot interval 𝑇𝑠 . The minimum 𝑇𝑠 depends on the
numerical accuracy of the CCL method, and the maximum
𝑇𝑠 is set by the largest 𝜆(𝑎) we wish to accurately capture.

On the accuracy of CCL, determining contiguous
regions of air is equivalent to reconstructing the interface
separating air and water based on the (discrete) VOF
field. Because there is not a unique geometric
reconstruction, there is ambiguity in whether nearby
regions of air are connected or not on discrete grids.
Practically, this means that, on short timescales, CCL
methods will generate spurious fragmentation/coalescence
or entrainment/degassing pairs of events. To avoid these
spurious events, Chan et al. (2021) recommends 𝑇𝑠𝛺 >

0.1, where
𝛺 = 0.42𝜀1/3𝑎−2/3 (21)

is the fragmentation frequency of a relevant bubble radius
𝑎 (Martínez-Bazán et al., 1999). Following Gaylo et al.
(2022), we chose 𝑎 = 𝑎res. For the dissipation rate 𝜀 ≈
0.0005 from DNS by Yu et al. (2019) (verified a posteriori,
see Fig. 4) to obtain 𝑇𝑠 > 0.3.

As discussed above, we may miss the entrainment
and degassing of a bubble if the two events are separated
by less than 𝑇𝑠 . In terms of the degassing rate, this means
we can only accurately measure 𝜆(𝑎) ≤ 1/𝑇𝑠 . Because the
largest expected value of 𝜆(𝑎) is unclear, we performed the
simulations with three concurrent instances of ELA with

(a)

0 20 40 60 80 100 120
0

2

4

6

8

10

12
10

-3

(b)

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

3.5

4
10

-1

Figure 3: Comparison of the ensemble average (a)
turbulent kinetic energy and (b) total volume of entrained
air for F𝑟2 = 10 between (——) our simulations; and
(——) reported by Yu et al. (2019). The dotted lines in
the respective colors indicate one standard deviation and
(- - - -) indicate the period of quasi-steady entrainment.

𝑇𝑠 = [0.4, 0.8, 1.6] respectively. A posteriori, we chose
𝑇𝑠 = 0.8 as the largest 𝑇𝑠 which reasonably resolves 𝜆(𝑎).

TURBULENCE PROPERTIES

In this section we investigate the properties of the
turbulence near the free surface. For analysis, we consider
turbulence averaged in the water phase,

⟨·⟩𝛿 ≡
∭

· (1 − 𝑐) dx∭
(1 − 𝑐) dx

for 𝑧 > −𝛿 , (22)

where 𝛿 = 0.2 captures the near-surface region (Yu et al.,
2019).

Evolution of Near-Surface Turbulence
For F𝑟2 = 10, Fig. 3 shows the evolution of the

turbulent kinetic energy,

⟨𝑘⟩𝛿 =
⟨u′ · u′⟩𝛿

2
(23)
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Figure 4: Ensemble average (a) kinetic energy and
(b) turbulent dissipation rate in the near-surface for
(——) F𝑟2 = 5; (——) F𝑟2 = 8; (——) F𝑟2 = 10;
(——) F𝑟2 = 15; and (——) F𝑟2 = 20. (- - - -) indicate
the period of quasi-steady entrainment.

where u′ = u − ⟨u⟩𝛿 , including a comparison to Yu
et al. (2019), who also performed an ensemble of 5
simulations at F𝑟2 = 10. We obtain similar magnitudes,
but because we use a stronger initial turbulence intensity to
perturbate the shear flow, ⟨𝑘⟩𝛿 reaches a maximum earlier
and the peak is slightly more pronounced. Related, we
see the entrained volume begins to increase earlier. For
the range of F𝑟2 here, we find that over 𝑡 ∈ [40, 70],
⟨𝑘⟩𝛿 and the rate of change of total entrained volume
𝜕𝑉/𝜕𝑡 regains relatively constant (see Fig. 4a and Fig. 3b
respectively). We define 𝑡 ∈ [40, 70] here as the
quasi-steady entrainment period and will focus on this
period.

Turbulent Froude Number

While the shear Froude number Eq. (19)
is prescribed by the simulation setup, it uses the
characteristic scales of the shear flow. This makes it
difficult to use when comparing to other canonical FST
problems, such as forced FST (Guo & Shen, 2009). As

10
1

10
-1

Figure 5: Relationship between the shear-flow Froude
number F𝑟2 and the turbulence Froude number 𝐹𝑟2

turb.
over 𝑡 ∈ [40, 70], including (- - - -) the linear fit given
by Eq. (26) with 𝐶 = 0.0079.

our research interest is FST generally, it is preferable
to consider the characteristic scales of the near-surface
turbulence rather than the shear flow.

To characterize the turbulence, we use the
velocity 𝑢rms =

√︁
2𝑘/3. Yu et al. (2019) showed that

the turbulence in the near-surface region is isotropic and
follows the Kolmogorov spectrum for entraining FST, so
the characteristic length scale is

𝐿turb. =
𝑢3

rms
𝜀

, (24)

where 𝜀 is the turbulent dissipation rate. Using these
velocity and length scales measured in the near-surface
region, we define the turbulent Froude number for FST,

𝐹𝑟2
turb. ≡

⟨𝜀⟩𝛿
g
√︁

2⟨𝑘⟩𝛿/3
(25)

Fig. 4 shows our ensemble measurements of ⟨𝜀⟩𝛿
and ⟨𝑘⟩𝛿 across F𝑟2 ∈ [5, 20]. We see that ⟨𝜀⟩𝛿 is
independent of F𝑟2 and ⟨𝑘⟩𝛿 depends only weakly on F𝑟2.
This means that the relationship between the shear flow
Froude number F𝑟2 and 𝐹𝑟2

turb. should be linear

𝐹𝑟2
turb. ≈ 𝐶 F𝑟2 . (26)

Fig. 5 confirms this relationship, and least-squares
regression gives 𝐶 = 0.0079.

ENTRAINMENT AND DEGASSING STATISTICS

In this section we investigate the statistics of entrainment
and degassing, obtained using ELA. Unless otherwise
noted, these statistics come from the period of quasi-steady
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Figure 6: Entrainment size distribution for (•) F𝑟2 = 5;
(•) F𝑟2 = 8; (•) F𝑟2 = 10; (•) F𝑟2 = 15; and (•) F𝑟2 = 20.
(——) shows ∝ 𝑎−10/3 predicted by Yu et al. (2020).

entrainment 𝑡 ∈ [40, 70] and represent the ensemble
average of simulations at a given F𝑟2. Size distributions
will only include resolved bubbles radius 𝑎 > 𝑎res.

Entrainment Size Distribution, 𝐼 (𝑎)
We start with the entrainment size distribution,

𝐼 (𝑎). Because entrainment represents the transport of
air across the free surface into the water, we normalize
𝐼 (𝑎) by the surface area of the undisturbed free surface,
𝐴 = (10.472)2.Yu et al. (2020) consider an entrainment
size distribution based on total entrainment over the entire
quasi-steady entrainment period (units [1/𝐿]), rather than
the entrainment per unit time (𝐼 (𝑎) ≔ [1/𝐿𝑇]) we
consider. Still, their mechanistic argument for the scaling
of entrainment with bubble radius is applicable to 𝐼 (𝑎).

Fig. 6 shows the entrainment size distribution
measured using ELA. As predicted by Yu et al. (2020),
we observe 𝐼 (𝑎) ∝ 𝑎−10/3. We highlight that this is the
first time this size distribution has been directly measured,
as opposed to inferred from the bubble population
distribution 𝑁 (𝑎). In the next section we show degassing
is significant in air entraining FST. And this, along with
how quickly fragmentation cascades change 𝑁 (𝑎) (Gaylo
et al., 2023), show that 𝐼 (𝑎) cannot generally be inferred
from measurements of 𝑁 (𝑎).
Relative Volume Flow Rates, 𝑄𝐷/𝑄𝐼

We now examine the volume flow rate of air
during FST entrainment. Recall Eq. (5): the change in
total entrained volume, 𝜕𝑉/𝜕𝑡, is the difference between
the flow of air from the sky to bubbles by entrainment, 𝑄𝐼 ,
and the flow of air from bubbles to the sky by degassing
𝑄𝐷 . Again, it is useful to normalize these values by 𝐴,
the surface area of the undisturbed free surface.

Previous work only had access to the net effect of
entrainment and degassing, 𝜕𝑉/𝜕𝑡. For F𝑟2 = 10, Fig. 7
shows 𝜕𝑉/𝜕𝑡, the derivative of 𝑉 (𝑡) shown in Fig. 3b.
Derivatives amplify statistical noise, so it is useful to
introduce a low-pass filter to facilitate qualitative analysis.
We use a simple moving average

�̃� (𝑡) ≡ 1
𝑊

∫ 𝑊/2

−𝑊/2
𝑓 (𝑡 + 𝑡′) d𝑡′ , (27)

where the window 𝑊 = 16 (corresponding to 20𝑇𝑠) was
chosen as a balance between noise reduction and temporal
resolution. Apart from changes in the level of apparent
statistical noise, the qualitative trends do not change
with 𝑊 . 𝑉 (𝑡) increases steadily over the quasi-steady
entrainment period 𝑡 ∈ [40, 70], so as expected 𝜕𝑉/𝜕𝑡 > 0
over the same period in Fig. 7.

Using ELA, we can now obtain 𝑄𝐼 and 𝑄𝐷 , the
contributions to 𝜕𝑉/𝜕𝑡, separately. For F𝑟2 = 10, these
results (as measured every 𝑇𝑠 and smoothed by Eq. (27))
are shown in Fig. 8. 𝜕𝑉/𝜕𝑡 > 0 over the quasi-steady
entrainment period so 𝑄𝐼 > 𝑄𝐷 must be true. Still, we
find that the magnitude of 𝑄𝐷 is close to 𝑄𝐼 , showing that
degassing is significant in entraining FST and has a large
effect on the total entrained volume of air.

To evaluate the effect of F𝑟2 on the relative
strength of degassing, 𝑄𝐷/𝑄𝐼 , we repeat the analysis
shown in Fig. 8 for each F𝑟2. A sensitivity analysis
(not shown) confirms that 𝑄𝐷/𝑄𝐼 does not depend on
the choice of 𝑇𝑠 . Fig. 9 shows that degassing is always
significant during the quasi-steady entrainment period,
i.e., 𝑄𝐷/𝑄𝐼 ∼ O(1). Additionally, the relative strength of
degassing is independent of F𝑟2.

Degassing Rate, 𝜆(𝑎)
Having shown that degassing is significant during

FST entrainment, we now investigate its size distribution.
Fig. 10 shows the degassing spectrum 𝐷 (𝑎). As expected
based on𝑄𝐷/𝑄𝐼 , the magnitude of the degassing spectrum
is smaller but still of the same order-of-magnitude as the
entrainment spectrum 𝐼 (𝑎).

As discussed earlier, it is useful to describe
degassing in terms of the degassing rate 𝜆(𝑎), shown in
Fig. 11. For the largest bubbles, we see some effect of
the 1/𝑇𝑠 upper limit on measurable 𝜆(𝑎); however, for
the majority of bubble sizes, 𝜆(𝑎) is well resolved. Note
that statistical noise increases with radius due to smaller
sample sizes. Larger bubbles are rarer, hence degassing of
larger bubbles is rarer (see Fig. 10).

We see that 𝜆(𝑎) increases with bubble radius,
i.e., smaller bubbles remain entrained longer than larger
bubbles. This is consistent with observations in the far
wake (Trevorrow et al., 1994) and implies that bubble rise
velocity is relevant to degassing rates. To elucidate the
scaling of 𝜆(𝑎), we start by analyzing which bubble-rise
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Figure 7: Rate of change of entrained volume 𝜕𝑉/𝜕𝑡 for F𝑟2 = 10 (•) as measured and (——) smoothed. (- - - -)
indicate the period of quasi-steady entrainment.
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Figure 8: On the positive 𝑦-axis, entrainment flow rate 𝑄𝐼 for F𝑟2 = 10 (•) as measured and (——) smoothed. On
the negative 𝑦-axis, degassing flow rate 𝑄𝐷 for F𝑟2 = 10 (•) as measured and (——) smoothed. (- - - -) indicate the
period of quasi-steady entrainment.
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Figure 9: Relative strength of degassing for (——) F𝑟2 = 5; (——) F𝑟2 = 8; (——) F𝑟2 = 10; (——) F𝑟2 = 15; and
(——) F𝑟2 = 20. (- - - -) indicate the period of quasi-steady entrainment.
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Figure 10: Degassing size distribution for (•) F𝑟2 = 5;
(•) F𝑟2 = 8; (•) F𝑟2 = 10; (•) F𝑟2 = 15; and (•) F𝑟2 = 20.
For reference, (——) is the same as in Fig. 6.

regime is present. Assuming the inertial regime, table 1
(Park et al., 2017) gives the bubble-rise Reynolds,

R𝑒𝑏,Inertial = 0.816 g5/6𝜈−5/3𝑎5/2 , (28)

which is valid if 1 < R𝑒𝑏,Inertial < 100. For R𝑒 = 1000
here, the bounds are

0.0108 (F𝑟2)1/3
< 𝑎 < 1.08 (F𝑟2)1/3 (29)

For the largest F𝑟2 = 20, the lower bound is 0.02 and
for the smallest F𝑟2 = 5 the upper bound is 1.8, meaning
all reported bubbles are in the inertial regime where the
vertical rise velocity is

𝑊𝑡 (𝑎) = 0.408 g5/6𝜈−2/3𝑎3/2 (30)

While we expect rise velocity to be important,
there is also strong turbulence in the near-surface
region which advects bubbles, introducing an additional
characteristic velocity, 𝑢rms. For 𝑢rms ≫ 𝑊𝑡 (small
bubbles), we expect turbulence to be significant to the
rise and subsequent degassing of bubbles. For 𝑢rms ≪ 𝑊𝑡

(large bubbles), we expect bubbles to rise as in quiescent
flow. This implies a transition at 𝑢rms = 𝑊𝑡 , corresponding
to a critical radius

𝑎𝑐 = 1.82 𝑢rms
2/3 𝜈4/9 g−5/9 . (31)

When we scale bubble radius by 𝑎𝑐 (Fig. 11b), we see a
collapse of 𝜆(𝑎) and a transition at 𝑎/𝑎𝑐 ∼ O(1). This
collapse demonstrates the relevance of 𝑊𝑡 and 𝑢rms to the
two observed regimes of degassing.

One might hypothesize that𝜆(𝑎) should scale like
the relevant characteristic velocity, 𝑢rms for 𝑎 ≪ 𝑎𝑐 and
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Figure 11: Degassing rate as a function of (a) bubble
radius 𝑎 and (b) scaled bubbles radius 𝑎/𝑎𝑐 for (•) F𝑟2 = 5;
(•) F𝑟2 = 8; (•) F𝑟2 = 10; (•) F𝑟2 = 15; and (•) F𝑟2 = 20.
(——) illustrates 𝜆 ∝ 𝑎 and 𝜆 ∝ 𝑎5/2. (· · · · · ·) indicates
1/𝑇𝑠 .

𝑊𝑡 (𝑎) for 𝑎 ≫ 𝑎𝑐. This would imply 𝜆(𝑎 ≪ 𝑎𝑐) ∝ const.
and 𝜆(𝑎 ≫ 𝑎𝑐) ∝ 𝑎3/2. However, Fig. 11b shows that the
observed scaling seems to be larger for each regime by a
factor of 𝑎: 𝜆(𝑎 ≪ 𝑎𝑐) ∝ 𝑎 and 𝜆(𝑎 ≫ 𝑎𝑐) ∝ 𝑎5/2. We
note that comparing 𝜆 (units [1/𝑇]) to a velocity (units
[𝐿/𝑇]) still leaves a characteristic length scale. A full
mechanistic explanation for the scaling of 𝜆(𝑎) is an area
of ongoing work.

CONCLUSION

Air-entraining free surface turbulence (FST) is relevant
to the near wake of the bubbly flow created by a vessel
and accurate models for the bubble population created
in the near wake are necessary for predicting the extent
and characteristics of the whole bubbly wake. This paper



performs ensemble DNS of a canonical shear-flow FST at
large F𝑟2 sufficient to entrain air. In addition to performing
more ensembles than previous work on this flow (Yu et al.,
2019; Yu et al., 2020), Eulerian label advection (ELA)
(Gaylo et al., 2023), a new numerical bubble tracking tool,
allows us to identify entrainment and degassing events
and extract their statistics. This first direct measurement
of entrainment and degassing provides new insight into
these mechanisms, which could not be obtained from only
measuring the resulting bubble populations.

Based on turbulent kinetic energy and confirmed
by the growth of 𝑉 , we identify the period of quasi-steady
entrainment for our (unsteady) shear-flow FST. During
this period, we measure the turbulence in the near-surface
region to provide a Froude number based on the
characteristic scales of isotropic turbulence rather than
characteristics of the shear profile. This will allow
comparison of our shear-flow FST to other FST flows.

For the quasi-steady entrainment period, we
obtain the first direct measurement of the entrainment
size distribution. We observe the 𝐼 (𝑎) ∝ 𝑎−10/3 power
law predicted by Yu et al. (2020) using the balance
between locally available turbulent kinetic energy and
bubble potential energy.

With the ability to directly measure entrainment
and degassing as opposed to only their net effect on the
total entrained volume 𝑉 , we evaluate the relative strength
of degassing compared to entrainment, as measured by the
ratio of degassing volume flow rate 𝑄𝐷 to entrainment
volume flow rate 𝑄𝐼 . When the total entrained volume
is increasing (𝜕𝑉/𝜕𝑡 > 0) we know degassing is weaker
than entrainment (𝑄𝐷 ≤ 𝑄𝐼 ). However, we show that
degassing is still significant for air-entraining FST. For
all F𝑟2, we observe 𝑄𝐷/𝑄𝐼 ∼ O(1). These results
show that models for degassing included to make accurate
predictions of the volume of entrained air in the near wake.

Knowing that degassing plays a significant role in
determining the bubble population in air-entraining FST,
we examine the size distribution of degassing. Assuming
that degassing is an independent process for each bubble,
we focus on the degassing rate 𝜆(𝑎), defined as the ratio
of the degassing size distribution 𝐷 (𝑎) to the bubble
population size distribution 𝑁 (𝑎). We find large bubbles
have a faster degassing rate, consistent with observations
relevant to the far wake, where degassing depends on
bubble rise velocity 𝑊𝑡 (𝑎). For the near wake, we expect
turbulent advection to also be relevant, leading to a critical
radius 𝑎𝑐 where 𝑢rms = 𝑊𝑡 (𝑎𝑐). We find that 𝑎𝑐 predicts
the transition between two observed regimes of 𝜆(𝑎).
We report the observed scaling of 𝜆(𝑎) in each regime,
and development of a mechanistic explanation is ongoing
work.
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DISCUSSION

P. M. Carrica, General Dynamics Electric Boat.

This paper presents DNS of bubble entrainment in a
shear flow. A significant contribution of the paper is
the quantification of bubble degassing through tracking
of individual bubbles. As is usually the case with this
team the work is excellent and very well presented. I have
a couple of points to spur discussion:

1.DNS appears to be used loosely in the paper. A true
DNS would require proper resolution of

(a)The Kolmogorov scale to capture the TKE
dissipation adequately.

(b)The flow around the bubbles that determine the drag,
deformation, curvature, surface tension forces, etc.

(c)The pinch-off and shear that dominate bubble
breakup (mostly of the smallest bubbles) and
the fluid film drainage that dominates bubble
coalescence.

Can you quantify to what extent these parameters are
satisfied for your simulations? I expect that resolution
is adequate for the larger bubbles and very poor for
smaller bubbles and prediction of coalescence, since
the resolutions required to resolve those phenomena
are extreme. Can you discuss to the best of your
knowledge and experience how under resolution could
affect results?

2.The fact that direct tracking of bubbles is used is a game
changer in the study of entrainment and degassing. This
paper shows a variety of interesting trends but for the
sake of time I’ll focus only on Fig. 11a. The general
trend of larger bubbles degassing faster is expected, but
what is the distribution of 𝜆(𝑎) for various 𝑎? Is it
Gaussian? Does the standard deviation correlate with the
local turbulence? These kind of parameters would aid
modeling of degassing to improve entrainment models.

AUTHOR’S REPLY

We thank Professor Carrica for his questions, addressed
below.

Question 1
Starting with the TKE dissipation, for the

Kolmogorov scale we use 𝜂 = (𝜈3/𝜀)1/4. Figure 4 shows
𝜀 near the free surface, where we expect the strongest
turbulence (largest 𝜀). After scaling (recall R𝑒 = 1000),
𝜀 ≈ 6 × 10−4 gives 𝜂/Δ𝑥 ≈ 1.3. 𝜂/Δ𝑥 > 1 confirms the
TKE dissipation is adequately captured.

While proper resolution of turbulence is the
typical definition of DNS for single-phase flow, Professor

Carrica is correct that two-phase flows have a variety
of other physics which must be properly resolved. An
important measure for resolving the physics of a bubble is
𝑎/Δ𝑥, the number of grid points per its (effective) radius
𝑎. We note that, for W𝑒 ∼ ∞, it is possible for the flow
here to create arbitrarily small bubbles. Therefore, it is not
possible to obtain sufficient 𝑎/Δ𝑥 for all bubbles. Instead,
we specify a minimum 𝑎res and exclude all bubbles smaller
than this from the results. From our experience, 𝑎res =

1.5Δ𝑥 is sufficient to resolve bubble fragmentation in the
absence of surface tension. To confirm the entrainment
distribution 𝐼 (𝑎) and degassing rate 𝜆(𝑎) are accurately
captured for 𝑎 > 𝑎res, we have performed a convergence
test. For F𝑟2 = 15, we perform three runs using a finer
5762 × 384 grid. Figure 12 shows that the measured 𝐼 (𝑎)
and 𝜆(𝑎) are independent of grid resolution, meaning our
grid captures the relevant physics, including drag as it
effects degassing rates. We note that this convergence test
is in addition to the convergence test by Yu et al. (2019),
who also found 3842 × 256 was adequate.
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Figure 12: Convergence of entrainment size distribution
(a), degassing rate (b) during 𝑡 ∈ [40, 70] for F𝑟2 = 15
with •, 3842 × 256 and □, 5762 × 384.

Finally, we note that our numerical method
does not resolve the thin film drainage associated with
coalescence at these resolutions. cVOF can only capture
one air-water interface per grid cell (Weymouth & Yue,



2010), which means any bubbles with interfaces within
one grid cell will coalesce. This leads to a systematic
over prediction of the rate of coalescence. Using ELA
to quantify coalescence in our simulations (which have
relatively low total void fraction), we find less than 10%
of resolved bubbles are involved in a coalescence event
during their lifetimes. This suggests that, even with an
over-predicted coalescence rate, coalescence has only a
minor effect on our reported bubble population.

Question 2
While possible to investigate the correlation

between local turbulence and degassing, the simulations
presented here did not record enough information to obtain
the necessary instantaneous spatial distributions of 𝜆(𝑎).
We agree this would be interesting to investigate in the
future, but note that many more ensemble simulations
would be needed to obtain statistical convergence of such
correlations.

For the statistical distribution of degassing rate
𝜆(𝑎) at various 𝑎, we consider the distribution of the life
time of bubbles between entertainment and degassing, 𝑇𝑏.
For bubbles that were entrained and then degassed without
any other processes (e.g., fragmentation) happening in
between, the degassing rate 𝜆(𝑎) can be related to this
distribution by 𝐸 [𝑇𝑏] = 1/𝜆(𝑎). As a representative
example, figure 13 shows the measured probability
distribution function of 𝑇𝑏, 𝑓𝑇𝑏 (𝑡𝑏), for bubbles of radius
𝑎 ∈ [0.08, 0.1] from the F𝑟2 = 15 simulations. Many
bubbles degass after very short 𝑡𝑏, but after that the
distribution of 𝑡𝑏 appears to be roughly exponential,

𝑓𝑇𝑏 (𝑡𝑏) = 𝐶 exp[−𝐶𝑡𝑏] , (32)

not Gaussian. Physically, one would expect a Gaussian
distribution if bubbles followed roughly similar parabolic
paths, leading to clustering of 𝑡𝑏 around the mean. Instead,
the exponential PDF implies that degassing can be treated
as a Poisson process where the history of a bubble has little
effect on the probability of degassing. From a modeling
perspective, this memory-less nature of Poisson processes
could be convenient.

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

Figure 13: Probability distribution function 𝑓𝑇𝑏 (𝑡𝑏) of
time between entrainment and degassing for bubbles of
effective radius 𝑎 ∈ [0.08, 0.1] for F𝑟2 = 15. (——)
shows the fit (excluding the smallest 𝑡𝑏 bin) to an
exponential distribution Eq. (32).
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